53 research outputs found

    Perspective: Composition–structure–property mapping in high-throughput experiments: Turning data into knowledge

    Get PDF
    With their ability to rapidly elucidate composition-structure-property relationships, high-throughput experimental studies have revolutionized how materials are discovered, optimized, and commercialized. It is now possible to synthesize and characterize high-throughput libraries that systematically address thousands of individual cuts of fabrication parameter space. An unresolved issue remains transforming structural characterization data into phase mappings. This difficulty is related to the complex information present in diffraction and spectroscopic data and its variation with composition and processing. We review the field of automated phase diagram attribution and discuss the impact that emerging computational approaches will have in the generation of phase diagrams and beyond

    A High Throughput Aqueous Passivation Testing Methodology for Compositionally Complex Alloys using Scanning Droplet Cell

    Full text link
    Compositionally complex alloy systems containing more than five principal elements allow exploring a wide range of compositions, processing, and structural variables with the hope for identifying unique properties. Such opportunities also apply to designing materials for improved corrosion resistance, regulated by a self-healing passive film. Such a rich landscape in reactivity and protectivity demands the search for high-throughput experimental testing workflows to uncover key metrics, indicative of superior properties. In this communication, one such methodology is demonstrated for evaluating passivation performance of a combinatorial library of Al0.7-x-yCoxCryFe0.15Ni0.15 thin film alloys in deaerated 0.1 mol/L H2SO4(aq), using a scanning droplet cell
    • …
    corecore